EDITOR: | March 6th, 2017 | 7 Comments

Exploring new ideas for making large-scale graphene sheets

| March 06, 2017 | 7 Comments

Imagine you are a company like SpaceX. A material like graphene that is 200 times stronger than steel will allow you to make stronger lightweight rockets. That means cheaper flights with increased payloads. You contact suppliers to source this amazing material and quickly find it is only available in tiny pieces, but you need metre scale sheets of the stuff. If you want to know how to make large sheets of graphene this is how it could be done, read on…

In part one we looked at a new way of making graphene by bubbling methane through molten metal. In this part we anticipate some of the problems inherent in this approach and think about the principles for building a machine that might be capable of making graphene in large-scale sheets.

Passing methane gas through the molten metal breaks it down into hydrogen gas and carbon; both rise to the surface. The hydrogen escapes as gas and the carbon floats as a solid. If the surface of the melt was smooth then graphene could form at the surface. However the hydrogen gas will form bubbles that will disrupt the formation of any layer. A basic reactor will only produce hydrogen gas and amorphous carbon (soot). To make graphene a smooth metal surface is needed. A side chamber acting as a flotation tank solves this problem.

Principles of a machine that can make sheet graphene continuously

This arrangement should circulate molten metal with enough dissolved carbon to produce a layer of graphene at the metal surface. I say ‘should’ because as far as I can tell this is a new idea and no one has published experimental work to prove this, yet.

Working on the assumption that we can produce sheet graphene by this flotation method, we now have another problem to solve. The snowflake growth problem. This is where the graphene layer starts to form from multiple points on a surface. These points grow in to domains that can look like hexagons, flowers and snowflakes. These domains eventually meet and this causes defects in the graphene layer. When producing sheet graphene these defects will disrupt the electrical, thermal and mechanical properties of the large-scale graphene product.

The obvious way of preventing these defects is to constrain the starting point of the graphene sheet. There are several possible ways this could work; the most straightforward is a sliding mask shaped to reveal a point area first.

How to make a defect free sheet of graphene using a sliding mask

The mask is in contact with and completely covers the molten metal surface in the flotation tank. As the mask begins to slide over the surface a small area of melt is revealed on which graphene can form. Pulling the mask further will reveal more metal surface for the graphene layer to grow. As the graphene layer started from a small point this should produce a defect free sheet of graphene.

At this point, dear InvestorIntel reader, you may be thinking how can we retrieve the graphene layer from the flotation tank and how can we get graphene out of the machine as a continuous sheet? Well, it should be possible to solve both problems with another idea that we can call a freezewall.

Graphic showing how to pull the sheet of graphene from the molten metal flotation tank using a freezewall

One side of the graphene flotation tank has a removable double wall. The inner wall is slightly lower than the outer one. Once the graphene has formed on the surface the outer wall is cooled slightly to freeze the molten metal nearby. This has two consequences, firstly the graphene layer is stuck to the surface of the frozen metal and secondly the frozen metal will stick to the side of the freezewall, especially if the wall has a dovetail groove shaped into the melt side of the wall.

When the melt freezes into the groove it is locked in place and part of the graphene sheet is frozen onto the surface of the melt. The melt level can be adjusted to the level of the lower inside wall. Then pulling the freezewall away from the flotation tank will pull the graphene layer as a sheet from the surface of the melt.

At the other side of the flotation tank, the graphene layer will be pulled away from the wall exposing fresh melt surface. This will prompt more dissolved carbon to migrate to the melt surface and attach to the edge of the graphene layer. This should spontaneously form a continuous sheet as the whole graphene layer is pulled from the flotation tank.

The width of the sheet is limited only by the width of the flotation tank, so this method is capable of producing sheet of graphene with a hammock index of zero (and above) namely a one square metre sheet.

Dear reader, you will appreciate that there are some significant engineering challenges to be overcome in making large-scale sheets of graphene using these principles. The purpose of this column is to put a set of ideas into the public domain so they are free to use by anyone. Companies such as SpaceX are used to achieving the impossible. This column moves graphene manufacture into the realm of the possible. Time will tell if smart, motivated and well-resourced people pick up these ideas and use them to help build their vision of the future.


Adrian Nixon is a Senior Editor at InvestorIntel. He began his career as a scientist and is a Chartered Chemist and Member of the Royal ... <Read more about Adrian Nixon>

Copyright © 2019 InvestorIntel Corp. All rights reserved. More & Disclaimer »


  • Commercialising graphene: A tale of two applications

    […] previous column explored ways of making graphene as large-scale sheets. However the current state of the art is to […]

    March 16, 2017 - 2:48 PM

  • Principles for making continuous sheet graphene

    […] we explored a speculative new idea for a continuous process that can make graphene in large-scale sheets. Chris Bentley of the Strategy Exchange, read my column and immediately recommended a book by […]

    April 3, 2017 - 2:45 PM

  • Rules for making steady sheet graphene – New Geekers

    […] we explored a speculative new concept for a steady course of that may make graphene in large-scale sheets. Chris Bentley of the Technique Change, learn my column and instantly really helpful a ebook by […]

    April 3, 2017 - 6:56 PM

  • Understanding Graphene Part 7: Graphene Fibre

    […] put this in context, regular readers will note that we have proposed a process for making continuous sheet graphene that will have a tensile strength of 130 giga Pascals (GPa) (or about ten thousand times […]

    June 19, 2017 - 2:53 PM

  • Making graphene and other 2D materials on liquid metal

    […] surface. These islands or snowflakes grow and eventually collide to form defects where they meet. In a previous column entry we proposed a solution to this problem by using a sliding mask to control the […]

    July 10, 2017 - 9:42 AM


    […] 与大多数科学创新一样,挑战在于从实验室到市场带来创新,而这通常与规模有关。单一技术一次或两次迭代可能会容易得多,但是在大规模生产中需要更多的研究和工业支持。对于单晶石墨烯,已经有一些想法 关于如何制造大型石墨烯片,但这些想法尚未完全实现。迄今为止创造的最大的石墨烯片只有500mm长。 […]

    January 24, 2018 - 2:09 AM

    • Adrian Nixon

      Thank you for your informed comment, this is my Google assisted attempt at a reply in Chinese: 谢谢您的意见。 把实验室的创新带入市场是一个很大的挑战。 您已经充分了解并正确地认为迄今为止生产的最大的石墨烯薄片仅有500mm长。 这是单晶石墨烯,你知道是由北大的一个团队做的。 中国在石墨烯的发展中起着主导作用,我读到的进展给我留下了深刻的印象。
      … and in English: Thank you for your comments. You are quite right that bringing innovation from the laboratory to the market is a challenge. You are well informed and correct that the largest graphene sheet produced so far is only 500mm long. This is single crystal graphene and as you will know has been made by a team at Peking University. China is playing a leading role in the development of graphene and I am impressed with the progress I read.

      January 24, 2018 - 4:53 AM

Leave a Reply

Your email address will not be published. Required fields are marked *