Appia Reports Wide Mineralization at Wilson Zone (Up to 8.98m @ 9.46 wt.% TREO), and Expands Underlying AMP Zone

written by Raj Shah | March 2, 2023

March 2, 2023 (Source) — Appia Rare Earths & Uranium Corp. (CSE: API) (OTCQX: APAAF) (FSE: A0I0) (FSE: A0I0.F) (FSE: A0I0.MU) (FSE: A0I0.BE) (the "Company" or "Appia") is excited to announce the release of assay results from 2022 diamond drilling of the Wilson and AMP zones of the WRCB area at its 100%-owned Alces Lake Rare Earth Elements (REES) Property, Northern Saskatchewan.

Wilson Zone Highlights from the program include:

- All newly drilled mineralization intervals occur near surface from 15 to 85 meters depth (Table 1)
- 8.98m @ 9.46 wt.% TREO including 0.87m @ 17.1 wt.% TREO in hole 22-WRC-024
- 7.02m @ 1.37 wt.% TREO including 0.59m @ 11.88 wt.% TREO in hole 22-WRC-022
- 2.92m @ 7.99 wt.% TREO in hole 22-WRC-029; one of multiple mineralized intervals

AMP Zone Highlights from the program include:

- Mineralization intervals occur from near surface to 200 meters depth (Table 1); open in all directions
- 12.13m @ 0.33 wt.% TREO including 5.7m @ 0.55 wt.% TREO

from hole 22-WRC-016

- 10.3m @ 0.42 wt.% TREO including 4.3m @ 0.61 wt.% TREO from hole 22-WRC-008
- 8.83m @ 0.36 wt.% TREO including 4.43m @ 0.55 wt.% TREO from hole 22-WRC-003B
- AMP Zone expands from that first reported June 1, 2022
- More drilling is warranted to the southeast along the >20
 km structural corridor

Final assays for Appia's 2022 Alces Lake diamond drilling program have been received, compiled, and interpreted zone-by-zone. The first results from the final assays are reported here. Further results will follow once all the results are finalized. The Company received additional highly-mineralized results from new sections in the Wilson zone and doubled the strike length of the newly identified, underlying AMP zone to 300 metres, which continues to remain open down plunge and along strike. This zone extends south-southeast to Magnet Ridge, which occurs at the same structural level, but near-surface. Table 1 below highlights the most significant geochemical assay results from these two zones, AMP and Wilson. Table 2 provides the collar information for all of the drill holes from the 2022 Wilson and AMP (WRC) diamond drilling program. The complete assays results are available in Table 3 by clicking on this Link.

Vice-President Exploration Irvine Annesley says, "The identification of the AMP zone (a new exploration target with metallogenic targeting implications) is an important development at Alces Lake. This style of mineralization (i.e., mineralized anatectic melt rocks within high-strain melt-transfer zones) is common to all previously discovered targets at WRCB and opens new mineralization potential for our 38,522.43-hectare property."

Appia President Stephen Burega says, "Impressive high grades

from new sections in the Wilson Zone continue to add volume to the WRCB's low- to high-grade REE mineralization. The Alces Lake 2022 exploration program provided new discoveries, expanded existing mineralization zones, and delivered encouraging assay results for our exploration investment. From this, we added to our pipeline of drilling targets for 2023 and beyond (previously reported)."

Table 1. Significant Highlighted Drillhole Composites

Hole ID	From (m)	To (m)	Drilled Length (m)	Wt.% TREO	Wt.% Ga2O3	ZONE	Including				
							From (m)	To (m)	Drilled Length (m)	Wt.% TREO	Wt.% Ga2O3
22-WRC-008	77.3	78.6	1.3	0.806	0.0050	Wilson					
22-WRC-020	78.86	80.4	1.54	0.512	0.0067	Wilson					
22-WRC-021	80.12	84.92	4.8	0.588	0.0041	Wilson					
22-WRC-023	17.52	21.4	3.88	0.611	0.0110	Wilson	21.08	21.4	0.32	3.18	0.0200
22-WRC-029	51.81	54.61	2.8	4.657	0.0100	Wilson	51.81	53.6	1.79	5.328	0.0100
22-WRC-027	31.16	32.4	1.24	4.696	0.0059	Wilson	31.16	32.16	- 1	5.391	0.0100
22-WRC-023	42.69	44.1	1.41	4.763	0.0051	Wilson	42.93	43.39	0.46	11.294	0.0090
22-WRC-025	20.16	21.75	1.59	0.64	0.0060	Wilson					
22-WRC-022	17.48	24.5	7.02	1.365	0.0063	Wilson	22.6	23.19	0.59	11.88	0.0210
22-WRC-024	38.86	47.84	8.98	9,458	0.0047	Wilson	4436	45.23	0.87	17.1	0.0270
22-WRC-029	40.75	43.67	2.92	7.99	0.0044	Wilson					
22-WRC-001	66	69.03	3.03	0.325	0.0055	AMP					
22-WRC-024	117.2	127.15	9.95	0.22	0.0236	AMP	117.2	119.2	2	0.473	0.0070
22-WRC-006	58.05	69.61	11.56	0.142	0.0045	AMP					
22-WRC-007	75.48	81.47	5.99	0.197	0.0049	AMP					
22-WRC-016	190.07	202.2	12.13	0.325	0.0047	АМР	190.07	195.77	5.7	0.549	0.0058
22-WRC-003B	210	218.83	8.83	0.36	0.0063	АМР	213.12	217.55	4.43	0.552	0.0068
22-WRC-010	186.14	190.29	4.15	0.131	0.0042	AMP					
22-WRC-012	137,35	140.19	2.84	0.23	0.0051	AMP					
22-WRC-013	10.83	13.65	2.82	0.185	0.0057	AMP					
22-WRC-014	11.5	14.18	2.68	0.14	0.0043	AMP					
22-WRC-015	9.15	10.9	1.75	0.274	0.0048	AMP					
22-WRC-009	171.15	172.96	1.81	0.509	0.0050	AMP	171.15	172.15	1	0.558	0.0050
22-WRC-008	169.45	179.75	10.3	0.421	0.0050	AMP	175.16	179.46	4.3	0.605	0.0058
22-WRC-022	114.6	120.82	6.22	0.481	0.0062	AMP	114.6	118.3	3.7	0.616	0.0060
22-WRC-018	195.2	201.67	6.47	0.347	0.0055	AMP	199.63	200.65	1.02	0.672	0.0060
22-WRC-020	173.34	174,87	1.53	0.521	0.0054	AMP					
22-WRC-021	182.16	186.9	4.74	0.159	0.0061	AMP					
22-WRC-017	192.04	201.62	9.58	0.221	0.0051	AMP	195	196.23	1.23	0.745	0.0070
22-WRC-019	164.52	177.53	13.01	0.276	0.0057	AMP	165.49	166.5	1.01	0.818	0.0070
22-WRC-023	113.18	119.67	6.49	0.2	0.0052	AMP					
22-WRC-027	128.64	129.8	1.16	0.29	0.0098	AMP					
22-WRC-029	123.71	126.79	3.08	0.121	0.0200	AMP				1	

Table 1. Highlighted assay composites from 2022 diamond drillholes in the WRCB area. wt.% TRE0 = ([Ce02 ppm] + [Dy203 ppm] + [Pr6011 ppm] + [La203 ppm] + [Nd203 ppm] + [Sm203 ppm] + [Eu203 ppm] + [Gd203 ppm] + [Tb407 ppm] + [Ho203 ppm] [Er203 ppm] + [Yb203 ppm] + [Lu203] ppm + [Y203 ppm]) / 10000 To view an enhanced version of this graphic, please visit: $\frac{https://images.newsfilecorp.com/files/5416/156928_table1appia.jp}{https://images.newsfilecorp.com/files/5416/156928_table1appia.jp}$

Table 2 — Drill hole collar details for 2022 WRCB drilling, including those of reported intercepts.

Hole ID	Easting	Northing	Elevation	Dip	Azimuth	Final Length (m)
22-WRC-001	667170	6618060	450	46	75	102.05
22-WRC-002	667170	6618060	450	64	75	360.31
22-WRC-003	667162	6617806	485	46	73	286.86
22-WRC-003B	667161	6617806	486	55	73	282
22-WRC-004	667082	6617675	491	45	72	376.75
22-WRC-005	667082	6617675	491	80	70	426
22-WRC-006	667203	6618022	452	65	73	101.66
22-WRC-007	667203	6618021	452	80	75	108
22-WRC-008	667144	6617886	482	44	71	189
22-WRC-009	667143	6617885	483	55	73	213
22-WRC-010	667143	6617884	483	66	72	220.32
22-WRC-011	667142	6617884	483	75	73	232
22-WRC-012	667200	6617897	472	46	74	180
22-WRC-013	667201	6618111	440	45	71	54
22-WRC-014	667201	6618111	440	58	72	58
22-WRC-015	667201	6618111	440	75	75	55
22-WRC-016	667158	6617844	482	52	71	228.5
22-WRC-017	667158	6617814	485	47	72	243
22-WRC-018	667158	6617844	482	61	74	224.77
22-WRC-019	667139	6617909	480	43	73	219.76
22-WRC-020	667139	6617909	481	53	73	210.42
22-WRC-021	667138	6617909	481	65	73	234
22-WRC-022	667170	6617963	465	45	73	141
22-WRC-023	667168	6617961	466	54	73	156
22-WRC-024	667169	6617962	466	63	73	158.67
22-WRC-025	667168	6617961	466	79	76	225
22-WRC-026	667147	6617983	470	77	74	189
22-WRC-027	667149	6617983	468	64	74	174
22-WRC-028	667149	6619783	390	55	71	117.31
22-WRC-029	667149	6617983	468	46	72	181.88
22-WRC-030	667612	6617665	474	44	50	189
22-WRC-031	667617	6617676	472	55	47	132.45
22-WRC-032	667564	6617468	477	46	50	228
22-WRC-033	666786	6618381	434	45	260	159
22-WRC-034	667144	6618038	454	56	73	50
22-WRC-035	667144	6618038	454	70	67	51
22-WRC-036	667145	6618038	454	86	71	55.33

To view an enhanced version of this graphic, please visit: https://images.newsfilecorp.com/files/5416/156928_c7cab71324d24a 6d_006full.jpg

Table 3 – Assay Results for 2022 WRC Diamond Drill Holes – The complete assays results are available by clicking on this <u>link</u>.

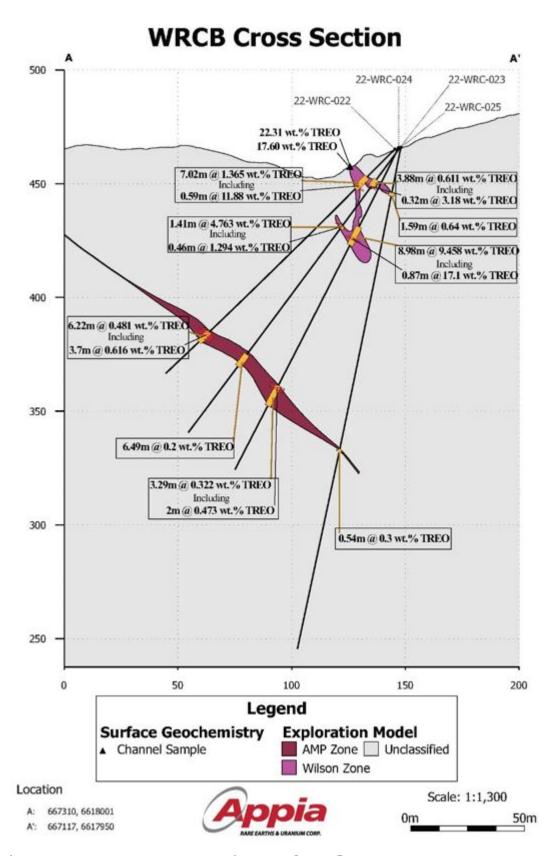


Figure 1. Cross Section of Holes 22-WRC-022, 22-WRC-023, 22-WRC-024, and 22-WRC-025 in the WRCB Area. Vertical 10m thickness section looking 165 degrees.

To view an enhanced version of this graphic, please visit:

https://images.newsfilecorp.com/files/5416/156928 figlappia.jpg.

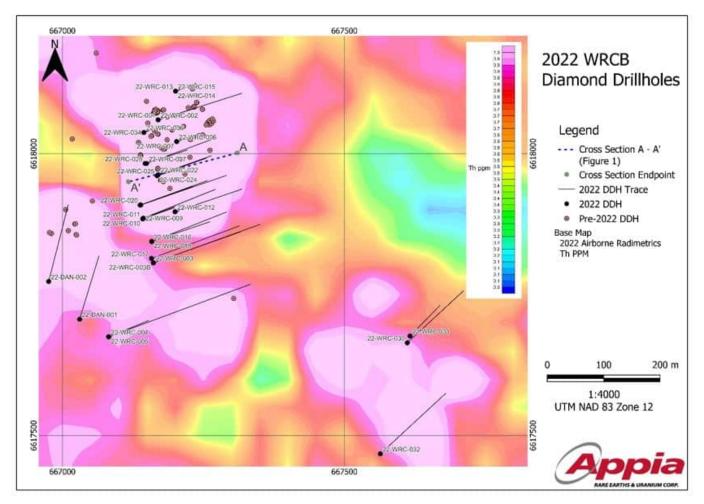


Figure 2. Map of 2022 diamond drill holes (DDH) in the WRCB area. Map base illustrates approximate Thorium (Th) abundances as determined by airborne radiometric surveys. Th is an important pathfinder element (i.e. a proxy to monazite mineralization) at Alces Lake.

To view an enhanced version of this graphic, please visit: https://images.newsfilecorp.com/files/5416/156928 fig2appia.jpg.

About the Alces Lake Project

The Alces Lake project encompasses some of the highest-grade total and critical* REEs and gallium mineralization in the world, hosted within several surface and near-surface monazite occurrences that remain open at depth and along strike.

* Critical rare earth elements are defined here as those that are in short-supply and high-demand for use in permanent magnets

and modern electronic applications such as electric vehicles and wind turbines (i.e: neodymium (Nd), praseodymium (Pr), dysprosium (Dy) and terbium (Tb)).

All lithogeochemical assay results of core samples were provided by Saskatchewan Research Council's Geoanalytical Laboratory, an ISO/IEC 17025:2005 (CAN-P-4E) certified laboratory in Saskatoon, SK. All analytical results reported herein have passed internal QA/QC review and compilation.

The technical content in this news release was reviewed and approved by Dr. Irvine R. Annesley, P.Geo, Vice-President Exploration, and a Qualified Person as defined by National Instrument 43-101.

About Appia Rare Earths and Uranium Corp (Appia)

Appia is a publicly traded Canadian company in the rare earth element and uranium sectors. The Company is currently focusing on delineating high-grade critical rare earth elements and gallium on the Alces Lake property, as well as exploring for high-grade uranium in the prolific Athabasca Basin on its Otherside, Loranger, North Wollaston, and Eastside properties. The Alces Lake project area is 38,522.43 contiguous hectares (95,191.00 acres) in size and is 100% owned by Appia. The Company holds the surface rights to exploration for 113,837.15 hectares (281,297.72 acres) in Saskatchewan. The Company also has a 100% interest in 12,545 hectares (31,000 acres), with rare earth element and uranium deposits over five mineralized zones in the Elliot Lake Camp, Ontario.

Appia has 130.5 million common shares outstanding, 153.8 million shares fully diluted.

Cautionary Note Regarding Forward-Looking Statements: This News Release contains forward-looking statements which are typically preceded by, followed by or including the words "believes", "expects", "anticipates", "estimates", "intends", "plans" or similar expressions. Forward-looking statements are not a guarantee of future performance as they involve risks, uncertainties and assumptions. We do not intend and do not assume any obligation to update these forward-looking statements and shareholders are cautioned not to put undue reliance on such statements.

Neither the Canadian Securities Exchange nor its Market Regulator (as that term is defined in the policies of the CSE) accepts responsibility for the adequacy or accuracy of this release.

For further information, please contact:

Tom Drivas, CEO and Director: (cell) 416-876-3957, (fax) 416-218-9772 or (email) tdrivas@appiareu.com.

Stephen Burega, President: (cellular) 647-515-3734 or (email) sburega@appiareu.com.

Irvine R. Annesley, Ph.D., P.Geo., Vice-President, Exploration: (tel.) (416) 546-2707 or (email) jnrirvine@appiareu.com.