Alphamin Announces Successful Infill Drilling at Mpama South With Increase in Both Resource Confidence and Mineral Resources

Critical Minerals & Rare Earths

February 10, 2023 (Source) – Alphamin Resources Corp. (AFM:TSXV, APH:JSE AltX, “Alphamin” or the “Company”), a producer of 4% of the world’s mined tin1 from its high-grade operation in the Democratic Republic of Congo, is pleased to announce completion of the infill drilling campaign at Mpama South and an updated Mineral Resource Estimate (MRE) for Mpama South.

HIGHLIGHTS

  • Substantially improved the confidence of Mineral Resources at Mpama South whilst extending the known mineralisation boundary.
  • Increased Indicated Resources by 286% to 3.26Mt based on assays from 63 additional infill and extensional drillholes.
  • Mpama South Mineral Resources now stand at:
    • 3.26Mt @ 2.46% Sn for 80.2kt contained tin in the Indicated category; and
  • 2.84Mt @ 2.42% Sn for 68.7kt contained tin in the Inferred category.
  • Significant additional resource growth potential at Mpama South as the deposit still remains open down-dip.
  • Mpama South Mine construction works progressing according to plan – project completion expected to increase Alphamin’s annual contained tin production from the current 12,000tpa to ~20,000tpa, approximating 6.6% of the world’s mined tin1.

Mpama South Updated Mineral Resource Estimate

In just 24 months, Alphamin has:

  • delivered a top-10 globally significant CRIRSCO compliant tin deposit by contained tin1 at Mpama South;
  • grown the resources to ~2.2 times versus the Maiden Mineral Resources and PEA2 numbers;
  • increased resource confidence across the deposit; and
  • commenced mine construction through own cashflows.

This brings forward an additional planned ~7,200tpa contained tin production, which will make Alphamin one of the largest tin producers globally and delivers on the Company strategy of organic growth and creating shareholder value.

The updated Mineral Resource for Mpama South follows eight months after the previous update announced on 31 May 2022. The update is based on receipt of assays for another 63 infill and extensional drillholes completed subsequent to the previous estimate which was based on 124 drillholes. The updated Mineral Resource is presented in Figure 1 along with the direction in which mineralisation is still open down dip and significant high grade periphery drilling intercepts.

The updated MRE now includes results from 187 drillholes at Mpama South as well as 6 drillholes drilled in 2015 in the area between Mpama South and the Mpama North ore body. The MRE was estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Best Practice Guidelines (2019) and is reported in accordance with the 2014 CIM Definition Standards.

Figure 1Updated Mpama South Mineral Resource 07 February 2023 with selected intercepts and direction in which mineralisation is still open
Source: Alphamin 2022

The Mineral Resource is classified into the Indicated and Inferred categories and is reported at a base case tin cut-off grade of 1.0%, which satisfies reasonable prospects for economic extraction. Mpama South Indicated Resources increased by ~286% to 3.26Mt by converting Inferred Resources, while Inferred Resources grew nominally by ~275kt (excluding those tonnes converted to Indicated). The Mineral Resource Estimate, which is effective as of 07 February 2023, is presented in Table 1 below:

Table 1: Updated Mpama South Mineral Resources effective date 07 February 2023

ClassificationTonnes (millions)Sn %Sn Tonnes
(thousands)
Indicated33.262.4680.2
Inferred42.842.4268.7

Mineral Resources that are not Mineral Reserves do not have a demonstrated economic viability and require advanced studies and economic analysis to prove their viability for extraction.

Extensional drilling down-dip and in the shallower northern and southern portions of Mpama South can be conducted at the Company’s election to carry on extending known mineralisation at Mpama South, which is still open in multiple directions. High grade drillholes around the peripheries where mineralisation remains open are highlighted in Figure 1, showing the remaining prospectivity for Resource expansion. However, for 2023, the focus will primarily be aimed at the Mpama South Mine construction and commissioning efforts, while exploration drilling will be curtailed, instead, focusing on further field work campaigns to support future programs.

The MRE has been completed by Mr. J.C. Witley (BSc Hons, MSc (Eng.)) who is a geologist with 34 years’ experience in base and precious metals exploration and mining as well as Mineral Resource evaluation and reporting. He is a Principal Resource Consultant for The MSA Group (an independent consulting company), is registered with the South African Council for Natural Scientific Professions (SACNASP) and is a Fellow of the Geological Society of South Africa (GSSA). Mr. Witley has the appropriate relevant qualifications and experience to be considered a “Qualified Person” for the style and type of mineralisation and activity being undertaken as defined in National Instrument 43-101 Standards of Disclosure of Mineral Projects.

Bisie Ridge Regional Exploration Update

Alphamin intensified exploration drilling on the 13km long Bisie Ridge from Q3 2022 to test highly anomalous soil, geophysical and structural targets identified during 2021. 8,773 metres of the 10,000 metre Phase 1 diamond core programme have been completed along the Ridge, with the remainder due for completion in Q1 2023.

Although anomalous mineralisation has been confirmed in drilling on the Ridge, it is not of the obvious coarse visual cassiterite type frequently seen in drillcore from Mpama North and South.

Only ~25% of assays have been returned from the independent laboratory to date from the Ridge drilling. Assay results when received will support a fuller investigation into the regional setting, along with data from the on-going geophysical downhole surveys, structural investigations and mapping, thereby enabling a refocused exploration programme. Until then, the key focus at site remains the construction and commissioning of the new Mpama South Mine.

Qualified Persons

Mr Jeremy Witley, Pr. Sci. Nat., B.Sc. (Hons.) Mining Geology, M.Sc. (Eng.), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved the scientific and technical information contained in this news release. He is a Principal Mineral Resource Consultant of The MSA Group (Pty.) Ltd., an independent technical consultant to the Company.

____________________________________________________________________________

FOR MORE INFORMATION, PLEASE CONTACT:

Maritz Smith                                
CEO                        
Alphamin Resources Corp.                        
Tel: +230 269 4166
E-mail: [email protected]
____________________________________________________________________________

CAUTION REGARDING FORWARD LOOKING STATEMENTS

Information in this news release that is not a statement of historical fact constitutes forward-looking information. Forward-looking statements contained herein include, without limitation, statements relating to the anticipated future exploration and resource estimation activities and outcomes and the timing thereof and expected increases in tin production from the development of the Mpama South deposit and the cost and timing of such development activities. Forward-looking statements are based on assumptions management believes to be reasonable at the time such statements are made. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. Although Alphamin has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. Factors that may cause actual results to differ materially from expected results described in forward-looking statements include, but are not limited to: uncertainty of future exploration and assay results and consistency with past results and expectations; uncertainties related to the technical and economic parameters applied in the Mpama South Preliminary Economic Assessment regarding forecasted tin prices, the tin grade mined and processing recoveries as well as operating costs; uncertainties inherent in estimates of Mineral Resources, global geopolitical and economic uncertainties, volatility of metal prices, uncertainties with respect to social, community and environmental impacts, uninterrupted access to required infrastructure, adverse political events, impacts of the global Covid-19 pandemic as well as those risk factors set out in the Company’s Management Discussion and Analysis and other disclosure documents available under the Company’s profile at www.sedar.com. Forward-looking statements contained herein are made as of the date of this news release and Alphamin disclaims any obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise, except as required by applicable securities laws.

Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.

Appendix 1: SAMPLE PREPARATION, ANALYSES AND QUALITY CONTROL AND QUALITY ASSURANCE (QAQC)

For sample preparation, analyses and quality control and quality assurance, see the Company’s news release dated 07 March 2022 entitled “ALPHAMIN ANNOUNCES MAIDEN MINERAL RESOURCE ESTIMATE AND POSITIVE PRELIMINARY ECONOMIC ASSESSMENT FOR MPAMA SOUTH”

Appendix 2: SIGNIFICANT INTERCEPTS (0.5% Sn lower threshold)

Hole
EastingNorthingRLm
Azi (°)
Dip (°)
From
To
Sn %
WidthSample Position
GPSGPS(m)1mid_xmid_ymid_z
BGH017582535988482273255-10237.8238.84.991.00582,7329,884,966678.6
BGH018
582535
9884822
732
93
0
141.2144.42.073.15582,6919,884,820727.9
145.8151.00.765.25582,6969,884,820727.9
BGH019582535988482273285-5147.0152.02.055.00582,6969,884,837715.8
BGH020
582535
9884822
732
84
-15
160.6164.41.453.80582,7049,884,846689.3
169.3171.15.421.80582,7119,884,846687.7
BGH021
582535
9884822
732
93
-15
109.2110.33.201.10582,6549,884,821700.1
164.6167.33.292.72582,7089,884,818687.6
BGH022


582554


9884785


732


90


0


75.080.53.995.53582,6339,884,784729.3
109.0110.01.351.00582,6649,884,785729.9
119.2122.12.222.88582,6769,884,785730.1
BGH023
582535
9884822
732
75
-15
171.4174.31.722.89582,7109,884,859683.7
175.9178.01.092.15582,7149,884,860683.0
BGH024
582554
9884785
732
103
-5
127.7129.60.541.90582,6799,884,749717.2
138.0142.01.134.05582,6909,884,746716.2
BGH025




582535




9884822




732




55




-20




212.3213.40.601.15582,7249,884,919662.3
218.0221.52.293.45582,7319,884,921660.7
222.7223.713.051.00582,7349,884,923659.9
228.0234.82.736.80582,7419,884,926658.0
BGH026


582554


9884785


732


113


-10


103.7108.03.304.29582,6499,884,735713.7
134.8136.53.721.65582,6769,884,722708.6
161.0162.55.611.50582,6999,884,711704.5
BGH030




582554




9884785




732




115




-20




110.0111.47.241.40582,6559,884,753692.2
141.9152.54.8510.60582,6869,884,745680.0
158.0161.23.613.20582,6999,884,742675.3
174.5175.811.031.35582,7139,884,738670.5
BGH032






582554






9884785






732






125






-20






177.0178.71.701.72582,6929,884,684671.3
182.0188.33.006.25582,6979,884,679669.1
190.3193.00.952.75582,7029,884,676667.2
194.4202.01.377.60582,7079,884,672665.3
203.5208.02.674.50582,7139,884,668663.2
BGH034








582554








9884785








732








115








-25








174.8178.011.993.20582,6899,884,696653.3
195.7200.01.214.30582,7069,884,686644.8
202.4206.71.864.28582,7119,884,683642.3
208.0213.31.405.30582,7169,884,680640.1
216.3221.31.425.05582,7229,884,676637.3
225.7231.00.705.35582,7309,884,671634.0
BGH027


582544


9884822


732


68


-27


212.4214.00.581.65582,7299,884,879634.0
226.0229.31.323.30582,7419,884,883628.4
235.5236.61.541.13582,7499,884,885625.2
BGH028




582554




9884785




732




90




-10




125.0126.01.721.00582,6769,884,772700.9
136.1137.21.851.08582,6879,884,770698.4
140.3142.01.031.72582,6919,884,770697.4
147.5151.32.883.79582,6999,884,769695.5
BGH029


582544


9884822


732


93


-25


126.0128.44.662.35582,6639,884,826678.5
178.9184.11.255.15582,7139,884,827657.7
193.7196.13.952.35582,7269,884,827653.0
BGH031
582544
9884822
732
75
-25
208.0211.50.993.53582,7299,884,876639.9
219.4222.41.162.98582,7399,884,879636.0
BGH033
582544
9884822
732
60
-27
259.0265.57.326.46582,7569,884,929612.8
268.5270.51.021.99582,7629,884,931610.0
BGH035


582554


9884785


732


90


-25


152.0165.02.9613.00582,6869,884,816665.0
171.0173.61.472.60582,7039,884,815657.4
176.6180.12.403.48582,7099,884,814654.9
BGH036
582544
9884822
732
65
0
147.5151.42.313.90582,6879,884,878724.8
156.6160.70.934.02582,6969,884,881724.7
BGH037






582554






9884785






732






105






-30






154.0157.03.813.00582,6809,884,741647.5
194.6197.61.542.95582,7129,884,730626.0
208.0211.21.293.23582,7239,884,726619.3
216.3220.22.793.90582,7309,884,723615.1
222.4226.71.774.30582,7359,884,721612.1
BGH038


582544


9884822


732


75


-30


151.7154.65.222.90582,6779,884,851654.3
218.3223.73.385.35582,7359,884,861621.4
226.7231.51.954.80582,7439,884,862617.6
BGH039




582554




9884785




732




100




-22




112.1113.02.120.92  582,6659,884,755687.6
116.3121.03.334.65582,6619,884,753686.1
145.0166.02.2021.00582,6969,884,744674.2
174.5176.00.951.50582,7139,884,739668.9
BGH040
582544
9884822
732
60
-30
232.0233.00.951.00582,7259,884,922618.2
273.7277.13.793.35582,7619,884,937600.0
BGH041582500988484773255-25340.0344.53.034.50582,8079,885,002599.5
BGH042


582544


9884822


732


60


-35


277.4280.01.932.65582,7519,884,922569.4
308.5312.00.623.50582,7769,884,932552.6
313.0315.61.522.55582,7799,884,933550.5
BGH043


582544


9884822


732


100


-10


102.5104.22.691.65582,6449,884,808709.0
123.0124.01.061.00582,6639,884,805704.8
163.6167.02.823.36582,7049,884,798696.7
BGH044582500988484771070-35330.0334.11.314.13582,7649,884,941533.4
BGH045


582544


9884822


732


100


-20


120.7121.831.551.10582,6569,884,806687.4
156.0159.40.563.40582,6899,884,799674.7
176.7183.63.246.92582,7089,884,795668.1
BGH046




582544




9884822




732




100




-30




195.2206.02.8510.82582,7129,884,795630.5
212.5215.21.902.65582,7239,884,793623.7
218.0220.67.162.60582,7289,884,792620.8
225.0226.04.361.00582,7339,884,791617.7
BGH047
582565
9884535
718
60
0
121.6124.60.912.99582,6539,884,879739.2
147.1148.11.281.00582,6759,884,889741.1
BGH048
582567
9884509
727
90
0
140.8143.10.902.30582,7089,884,496727.7
146.5148.00.741.47582,7139,884,495728.0
BGH049582565988453571865-15145.4147.44.272.00582,6899,884,599674.5
BGH0505825679884509727105-5160.0161.41.061.38582,7229,884,469711.7
BGH051




582565




9884535




718




40




0




134.8137.02.232.20582,6629,884,630712.3
151.0156.31.205.30582,6759,884,642711.4
164.2169.53.955.27582,6859,884,651710.8
171.3172.64.081.30582,6889,884,655710.6
BGH05258256798845097271200205.9207.11.861.20582,7329,884,385722.9
BGH053








582565








9884535








718








40








-15








173.7176.99.583.20582,6859,884,653669.2
178.6181.44.072.88582,6889,884,656667.9
192.4196.93.284.45582,6989,884,666664.0
198.9206.82.457.91582,7049,884,671661.8
207.5209.55.041.97582,7089,884,675660.3
214.7216.02.321.35582,7139,884,680658.6
BGH054No significant intercepts
BGH055582565988453571880-15145.0146.00.621.00582,7059,884,549682.7
BGH056No significant intercepts
BGH057No significant intercepts
BGH058582565988451072795-5153.4155.61.982.25582,7179,884,501703.9
BGH0595825679884536718950165.0166.03.631.00582,7329,884,528714.4
BGH060No significant intercepts
BGH0615825679884536727130-10157.6159.21.221.62582,7199,884,525677.7
BGH062582567988453771895-15154.0156.02.182.00582,6959,884,589650.2
BGH063








582782








9884646








829








270








-70








186.3194.40.828.12582,7199,884,661650.5
197.4202.51.125.03582,7159,884,661641.8
205.0209.10.834.05582,7129,884,661635.4
211.1218.92.067.77582,7099,884,661628.3
220.4222.60.862.15582,7069,884,661622.5
231.0233.00.872.00582,7019,884,661613.0
BGH0645828889884976839270-50220.8222.60.631.80582,7469,884,976668.9
BGH065
582913
9885057
819
270
-60
271.0276.02.934.95582,7699,885,057586.1
291.6292.61.701.00582,7599,885,057570.9
BGH066
582888
9884976
839
270
-60
276.0278.68.492.59582,7549,884,965596.1
300.0301.01.781.00582,7429,884,965576.6
BGH067


582913


9885057


819


270


-67


295.8300.53.214.72582,7899,885,065548.1
303.0304.61.561.62582,7869,885,065543.1
337.0338.00.551.00582,7699,885,068514.3
BGH068
582913
9885057
819
270
-50
247.0248.22.101.20582,7499,885,051633.1
251.8255.11.753.30582,7459,885,051628.8
BGH0695828889884976839270-70321.8324.73.842.93582,7799,884,962534.7
BGH0705829139885057819270-73331.0336.43.005.35582,8029,885,040505.2
BGH071No significant intercepts
BGH072
582852
9884845
831
270
-67
274.6279.72.705.10582,7499,884,847574.0
290.4294.83.614.40582,7429,884,847560.0
BGH0735827319884691838280-60121.0123.00.722.00582,6719,884,702731.9
BGH074




582944




9885130




798




270




-67




278.9283.92.855.03582,8109,885,137551.2
285.5289.11.603.61582,8079,885,138546.3
294.5297.37.142.79582,8029,885,139539.1
299.7303.30.533.69582,7999,885,139534.5
BGH075




582731




9884691




838




270




-70




115.4116.76.761.25582,6909,884,690729.4
119.5120.815.221.30582,6889,884,690725.7
125.1129.83.564.71582,6849,884,690719.3
162.6164.68.942.08582,6679,884,689687.8
BGH076




582752




9884801




849




300  




-40




108.0109.00.841.00582,6829,884,844779.6
118.8119.53.710.65582,6759,884,848772.7
128.2131.02.822.85582,6689,884,852765.8
136.7137.00.970.30582,6639,884,855761.0
BGH077






582944






9885130






798






270






-72






316.8321.22.574.36582,8309,885,130501.7
323.0328.42.565.36582,8279,885,130495.8
329.1330.10.521.07582,8259,885,130492.4
335.3337.49.632.11582,8229,885,130486.5
339.8340.17.070.30582,8209,885,131483.4
BGH078


582752


9884801


849


280 


-40


102.0106.01.884.00582,6749,884,816782.6
108.0109.00.621.00582,6719,884,817779.7
115.0117.20.802.15582,6659,884,818774.8
BGH079












582852












9884845












831












270 












-73












290.2294.41.004.25582,7659,884,842552.6
296.3302.39.466.00582,7639,884,841546.1
304.8305.718.750.89582,7619,884,841540.5
312.0313.01.081.00582,7589,884,841533.8
316.9321.64.654.73582,7559,884,840527.5
322.6328.05.415.43582,7539,884,840522.0
329.0329.51.590.53582,7519,884,840518.4
340.7341.44.290.74582,7479,884,839507.6
BGH080


582944


9885130


798


270


-75


339.9343.61.053.70582,8539,885,141469.2
345.0346.64.111.55582,8519,885,141465.5
360.7361.011.950.30582,8469,885,143451.5
BGH081a
583022
9885299
776
270
-50
269.0274.61.995.56582,8389,885,306578.6
275.6275.90.640.30582,8359,885,307576.0
BGH082a


583013


9885209


752


270


-50


263.8266.33.432.47582,8369,885,222556.0
268.4269.23.320.80582,8339,885,223553.5
277.0277.315.650.30582,8279,885,224547.9
BGH083No significant intercepts
BGH084
583023
9885299
776
270
-57
279.0280.96.251.95582,8579,885,307552.8
283.1286.31.283.25582,8549,885,307549.2
BGH0855830239885299776270-65294.7298.40.833.70582,8909,885,304512.9
BGH086
583013
9885208
752
270
-57
275.4280.83.075.43582,8479,885,214530.1
286.1286.518.900.46582,8419,885,215524.4
BGH0875830239885299777270-75263.8264.30.590.53582,9469,885,305525.0
BGH088


















583012


















9885208


















752


















270


















-67


















297.7299.511.931.72582,8769,885,221487.3
301.0301.86.790.77582,8759,885,221485.0
303.7304.02.470.30582,8739,885,222483.0
305.7306.01.660.30582,8729,885,222481.4
307.2307.66.660.35582,8719,885,223480.2
308.3308.912.150.67582,8719,885,223479.2
309.5309.81.980.31582,8709,885,223478.3
310.4310.717.650.33582,8699,885,223477.6
313.0313.92.820.85582,8689,885,224475.3
324.5324.95.770.38582,8619,885,226466.3
325.4325.810.400.40582,8619,885,226465.6
BGH089




582951




9885352




779




270




-50




198.0199.04.581.00582,8229,885,357628.9
202.7203.512.250.80582,8199,885,357625.5
205.1205.57.960.44582,8189,885,357623.7
217.5218.531.901.00582,8099,885,358614.1
BGH090


582951


9885423


769


270


-50


168.8170.52.451.68582,8439,885,424638.3
170.9171.512.550.60582,8429,885,424637.1
173.0173.35.050.33582,8419,885,424635.6
BGH0915829519885352779270-65222.1223.54.021.40582,8509,885,358581.3
BGH0925830219885430752270-55193.5193.917.150.38582,9139,885,431591.9
BGH093


583013


9885345


759


270


-70


224.3224.84.060.50582,9329,885,341549.9
225.8226.71.810.92582,9319,885,341548.3
227.7228.32.750.60582,9309,885,341546.7
BGH094


582990


9885055


810


270


-65


381.0384.83.843.81582,8089,885,054473.5
389.7390.35.950.51582,8059,885,054467.4
408.5411.05.822.55582,7959,885,054450.4
BGH095




582960




9884759




831




270




-60




391.6399.64.568.03582,7739,884,762482.7
400.0401.01.851.00582,7709,884,761478.6
405.0412.04.476.97582,7669,884,761471.9
414.0414.31.360.30582,7639,884,761467.2
BGH096No significant intercepts
BGH097
583013
9885345
759
270
-58
242.0245.51.103.50582,8799,885,344555.7
247.0250.12.663.10582,8769,885,344551.8
BGH099No significant intercepts
BGH100
583013
9885345
759
270
-79
226.8231.32.094.51582,9659,885,347535.2
233.1235.01.581.92582,9649,885,347530.3
BGH101






582990






9884975






813






270






-65






387.4388.62.661.25582,8029,884,968474.7
392.3394.71.492.35582,7999,884,968470.1
396.0398.20.532.24582,7979,884,968467.1
402.7410.23.687.46582,7929,884,967459.3
423.6425.513.481.84582,7819,884,967444.5
BGH102No significant intercepts
BGH103


582951


9885423


767


270


-64


161.9167.01.715.17582,8829,885,425618.5
167.8172.11.114.29582,8809,885,425613.4
173.4177.01.713.65582,8779,885,425608.7
BGH104






582985






9885054






811






270






-72






459.4463.010.193.65582,8299,885,047378.1
464.8465.18.350.30582,8279,885,047374.8
471.4475.51.724.15582,8239,885,046367.3
477.6478.00.960.42582,8219,885,046363.5
485.9486.22.120.37582,8179,885,045356.3
BGH105


















582963


















9884842


















834


















270


















-70


















406.5407.00.980.48582,8079,884,837458.9
410.2413.01.202.80582,8059,884,836454.6
416.9421.41.664.45582,8029,884,836447.9
421.8425.04.333.21582,8009,884,836444.1
427.7431.30.803.55582,7979,884,836438.7
434.6437.41.112.77582,7949,884,835433.0
442.3442.61.980.30582,7919,884,835427.3
446.0446.31.240.30582,7899,884,834424.1
453.7454.00.620.30582,7859,884,834417.4
457.8459.95.032.17582,7839,884,833413.0
461.7462.60.910.93582,7819,884,833410.2
BGH106No significant intercepts
BGH1075829919884982814270-75496.9502.28.215.21582,8269,884,984343.4
BGH108








582963








9884905








828








270








-62








377.2377.511.950.31582,7869,884,895495.2
381.5381.87.400.30582,7849,884,895491.5
385.3387.54.502.20582,7819,884,895487.6
391.0395.02.093.96582,7779,884,894482.1
401.0402.01.441.00582,7739,884,894475.1
405.3409.42.404.05582,7699,884,893470.3
BGH109No significant intercepts
BGH110




582963




9884905




828




270




-73




459.2467.41.008.14582,7999,884,879397.0
468.1476.710.358.58582,7959,884,878389.2
485.5486.210.300.70582,7889,884,876377.8
489.8490.92.011.12582,7869,884,875374.0
BGH111








582959








9884759








831








270








-55








334.4341.34.246.89582,7689,884,745553.1
342.4350.04.927.65582,7629,884,745547.0
352.5357.30.674.75582,7569,884,744540.6
358.3361.30.633.03582,7539,884,744537.0
362.7367.20.584.50582,7499,884,744533.3
368.0370.23.152.16582,7469,884,743530.4
BGH112
582870
9885354
790
270
-55
130.3130.62.320.30582,7979,885,360681.8
135.3135.75.690.44582,7949,885,360677.7
BGH113
582910
9885205
780
270
-62
213.0216.60.943.60582,8109,885,204590.1
229.0230.04.491.00582,8039,885,204577.3
BGH114




582870




9885354




790




270




-63




138.5138.94.400.36582,8079,885,358666.2
143.3143.66.840.30582,8059,885,358662.1
147.0147.63.830.65582,8039,885,358658.8
151.5151.80.820.30582,8019,885,358655.0
BGH115No significant intercepts
BGH116
582886
9884671
818
270
-58
285.4292.03.516.63582,7279,884,661577.7
292.5294.01.041.54582,7249,884,660574.2
BGH117No significant intercepts
BGH118
582842
9885430
769
270
-60
95.095.92.050.90582,7959,885,430686.6
100.6100.90.950.30582,7929,885,430682.1
BGH1195828429885430769270-75103.0105.02.332.00582,8149,885,431669.5
BGH120
582886
9884671
818
270
-70
323.0327.40.984.41582,7469,884,662528.2
330.3334.41.924.14582,7419,884,662522.6
BGH121No significant intercepts
BGH122


582853


9885112


780


275


-65


153.4157.51.504.09582,7869,885,123640.6
158.1161.91.263.81582,7849,885,123636.5
162.8165.01.662.25582,7839,885,123633.1
BGH123
582960
9884759
831
270
-70
432.0437.11.965.05582,7899,884,746432.8
438.5438.81.200.30582,7879,884,746429.3
BGH124No significant intercepts




















BGH125No significant intercepts
BGH126b
582842
9885204
800
270
-65
150.8151.61.260.76582,7859,885,211659.7
164.0164.31.230.3582,7809,885,212647.8
BGH127
582854
9885112
781
275
-50
145.0145.31.440.3582,7609,885,121669.8
155.3158.00.622.75582,7539,885,121661.1
BGH128


583076


9885130


758


270


-68


400.8407.34.476.51582,9049,885,137393.4
408.8410.40.721.55582,9019,885,138388.9
412.6416.01.113.4582,8999,885,138385.1
BGH129
582912
9885391
786
270
-60
175.6178.51.642.93582,8269,885,391631.3
181.1181.40.950.3582,8249,885,391627.6
BGH130


582824


9885062


788


265


-50


126.3127.01.330.68582,7409,885,062693.0
133.0134.00.911582,7369,885,062687.9
139.2139.65.430.4582,7329,885,062683.5
BGH131
582931
9885285
801
270
-53
196.9200.60.713.7582,8059,885,289647.4
210.0210.30.90.3582,7979,885,289638.9
BGH132
582912
9885391
786
270
-50
169.0172.71.463.74582,8069,885,388652.1
175.8176.21.60.4582,8029,885,388648.1
BGH133
582851
9885511
764
270
-60
49.650.32.540.68582,8259,885,513720.8
53.653.82.380.22582,8239,885,514717.5
BGH134No significant intercepts
BGH135


582836


9885387


775


270


-50


82.082.90.630.89582,7859,885,387710
92.793.01.440.3582,7789,885,387702
104.0105.00.671582,7719,885,387693
BGH136


582852


9885467


759


270


-58


65.166.01.320.86582,8179,885,467704
69.872.30.692.55582,8159,885,467699
75.779.113.41582,8119,885,467694
BGH1375829319885285801270-62224.4230.61.416.2582,8309,885,285598
BGH1385828369885387775270-6597.497.72.30.3582,7959,885,387687
BGH1395829519885468748270-59123.9127.60.983.77582,8869,885,472641
BGH1405829879885256783270-50249.5253.61.264.05582,8319,885,266586
BGH1415829129885164783270-50174.6179.31.294.72582,8029,885,170645
BGH142
582912
9885016
826
270
-50
230.4235.81.295.39582,7669,885,018645
236.7238.31.981.58582,7639,885,018641
BGH143
582912
9885164
783
270
-60
210.8215.80.865.04582,8039,885,172600
225.3225.72.060.35582,7969,885,173590
BGH144a
582987
9885255
783
270
-60
264.6266.82.171.85582,8579,885,263552
269.1269.40.33.1582,8559,885,264549
BGH145


582912


9885016


826


270


-60


265.5271.02.595.48582,7869,885,013589
271.4272.81.171.37582,7849,885,013586
282.2282.516.250.3582,7799,885,013577
BGH146No significant intercepts
BGH147No significant intercepts
BGH148No significant intercepts
BGH149






582954






9884799






834






270






-55






335.4337.22.11.75582,7619,884,799559
342.0346.04.454582,7579,884,799553
347.7350.72.433.07582,7549,884,799548
352.3352.85.120.51582,7529,884,799546
362.5363.00.570.5582,7469,884,799537
BGH150No significant intercepts
BGH151No significant intercepts
BGH152D1
582821
9884623
805
269
-72
257.0259.92.012.85582,7319,884,621564
263.0263.39.060.3582,7299,884,621559
BGH153






582953






9884875






834






270






-55






327.5330.61.63.14582,7669,884,880563
333.4336.52.623.06582,7639,884,880559
342.4345.71.633.29582,7579,884,881551
347.0349.70.572.68582,7559,884,881548
367.8368.74.40.91582,7439,884,881532
BGH154No significant intercepts
BGH155No significant intercepts
BGH156
582988
9885258
789
270
-68
289.2289.82.570.65582,8759,885,264523
296.6296.90.770.3582,8729,885,265516
BGH157No significant intercepts
BGH158


582802


9885086


788


270


-47


105.4107.20.681.75582,7409,885,087701
113.0117.00.854582,7359,885,087694
120.0120.80.610.75582,7329,885,087690
BGH159


582975


9884940


822


270


-72


436.4437.73.661.33582,8199,884,932415
448.0449.00.621582,8149,884,932405
457.2457.61.280.4582,8109,884,933397
BGH160




582903




9885087




806




270




-50




219.1219.51.120.38582,7559,885,090645
221.6222.01.290.49582,7539,885,090643
226.7230.00.743.3582,7499,885,090638
233.6233.92.710.25582,7459,885,090635
BGH161No significant intercepts
BGH1625828519885512764270-7459.059.66.570.56582,8359,885,512707
BGH163






583009






9885093






799






270






-70






409.7417.13.377.36582,8689,885,098411
420.7422.10.551.42582,8659,885,098403
423.8429.00.745.24582,8639,885,099399
429.6429.91.960.3582,8629,885,099396
432.0433.00.591582,8609,885,099393
BGH164
582776
9884574
797
270
-70
171.0172.00.721582,7099,884,571639
176.0180.00.764582,7079,884,570633
BGH165
582903
9885087
806
270
-60
242.9247.22.414.27582,7719,885,083600
248.4250.02.141.61582,7699,885,083597
BGH166


582823


9884623


806


270


-60


208.9209.71.060.75582,7209,884,623623
214.2218.10.523.9582,7179,884,623618
221.0222.32.961.26582,7149,884,623613
BGH1675829759885388767270-53195.7200.51.854.86582,8569,885,388609
BGH168
582982
9885169
770
270
-50
252.6257.31.934.69582,8329,885,192565
263.4263.619.40.25582,8279,885,193558
BGH169a5828239884616794270-79301.0301.81.060.75582,7459,884,613503
BGH170




583009




9885093




799




270




-60




365.0370.12.55.1582,8309,885,095478
371.9376.02.164.15582,8279,885,095473
376.9377.13.940.25582,8259,885,095470
388.9390.01.131.1582,8199,885,096459
BGH171


582982


9885169


770


270


-62


275.5278.01.42.52582,8479,885,185529
285.5289.40.633.9582,8419,885,186520
291.9292.216.50.3582,8389,885,187517
BGH172No significant intercepts
BGH173


582982


9885167


766


270


-70


319.6322.45.182.8582,8739,885,176464
325.7330.04.664.28582,8719,885,177458
330.9336.62.245.69582,8699,885,177452
BGH1745830109885093799270-50363.5366.00.812.5582,7919,885,091507
BGH175




582976




9885388




767




270




-71




187.8192.32.154.5582,9169,885,392587
193.9197.33.333.4582,9149,885,392582
199.4199.90.610.55582,9139,885,392578
203.7204.82.361.12582,9129,885,392573
BGH176


582993


9884984


814


270


-78


512.7516.21.13.46582,8499,884,970321
518.0522.32.444.25582,8479,884,970315
525.5528.01.642.55582,8459,884,969309
BGH177


582958


9884766


831


253


-63


405.6409.21.093.56582,7749,884,706473
412.6414.91.792.32582,7719,884,705467
421.4421.74.390.24582,7679,884,704461
BGH178No significant intercepts
BGH1795829599884769831248-70489.6491.21.111.6582,7989,884,701373
BGH180b


582774


9884571


794


270


-77


213.1215.90.912.85582,7229,884,571582
217.5222.61.585.11582,7209,884,571576
224.1224.30.890.25582,7199,884,571573
BGH181


582955


9884806


837


270


-63


369.5372.51.413.02582,7789,884,809511
377.3379.58.382.21582,7749,884,809505
385.4385.71.20.3582,7709,884,809499
BGH182








582953








9884875








835








270








-65








393.0395.24.082.22582,7949,884,872474
403.4408.24.664.81582,7899,884,872464
416.2416.50.630.34582,7859,884,872454
424.9425.51.830.61582,7819,884,872446
439.5439.724.60.25582,7759,884,872433
446.8449.00.952.17582,7719,884,872426
BGH183












582844












9884709












843












270












-71












285.7289.00.833.33582,7499,884,711572
290.0293.52.693.54582,7479,884,711568
296.0296.71.080.7582,7469,884,711564
299.3303.44.674.14582,7449,884,711559
305.5306.15.890.65582,7429,884,711555
309.8313.22.993.44582,7409,884,711550
314.1318.01.523.9582,7389,884,711546
322.0323.90.861.86582,7369,884,711539
BGH184












582957












9884767












834












270












-52












321.4324.92.13.42582,7589,884,761579
327.3329.15.91.87582,7559,884,760575
331.5333.53.082.05582,7529,884,760572
337.0339.00.672582,7489,884,760568
340.6342.50.531.96582,7469,884,759565
345.6350.010.664.4582,7429,884,759561
352.0355.80.573.8582,7389,884,758556
356.5356.71.960.24582,7369,884,758554
BGH185




582849




9884706




842




270




-75




326.4331.81.955.31582,7609,884,706525
332.8335.61.992.83582,7589,884,706521
339.7342.00.732.3582,7569,884,706514
345.1345.41.660.26582,7549,884,706510
BGH186






582953






9884802






834






270






-71






410.9423.53.9412.58582,7999,884,799447
424.0427.00.613582,7959,884,799440
433.4435.52.752.1582,7919,884,799432
441.1448.54.847.35582,7869,884,798423
449.0452.43.43.35582,7849,884,798417
BGH187










582991










9884982










814










278










-61










365.7368.41.652.73582,8089,885,001496
372.5373.010.51582,8059,885,001491
375.6376.00.750.45582,8049,885,002489
381.9385.47.443.5582,8009,885,002482
387.9391.02.43.12582,7979,885,002477
394.2394.52.380.25582,7949,885,002473
409.6410.025.30.4582,7869,885,003460
BGH1885829919884982814284-67Independent assays still outstanding

Appendix 3: Checklist of Assessment and Reporting Criteria

Drilling techniquesAll drillholes were diamond drill cored and drilled from surface (most intersections drilled using NQ size), holes drilled orientated in an east-west direction were angled between -60° and -70°. Holes collared in the west were drilled out in fan patterns into the side of a hill and angled between 0° and minus 35°.
LoggingAll of the drillholes were geologically logged by qualified geologists. The logging is of an appropriate standard for grade estimation.
Drill sample recoveryCore recovery in the mineralised zones was observed to be very good and is on average 97%.
Sampling methodsHalf core samples were collected continuously through the mineralised zones after being cut longitudinally in half using a diamond saw. Drillhole samples were taken at nominal 1 m intervals, which were adjusted to smaller intervals in order to target the cassiterite vein zones. Lithological contacts were honoured during the sampling. MSA’s observations indicated that the routine sampling was performed to a reasonable standard and is suitable for evaluation purposes.
Quality of assay data and laboratory testsAt the on-site ABM laboratory (managed by Anchem), samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2mm, from which a 250g riffle split was taken. This 250g split was pulverised in ring mills to 90% passing 75μm from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10g for on-site laboratory assaying and another 150g sample for export and independent accredited 3rd party laboratory assaying.

Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed by way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85 % passing 75μm. Samples are analysed for tin using method code ME-XRF05 conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

Prior to the 2021 drilling the assays were also conducted at ALS Global in Johannesburg where samples were analysed for tin using fused disc ME-XRF05 with 10% precision and an upper limit of 10 000 ppm. This was reduced to 5,000 ppm from 2014 onwards. Over limit samples were sent to Vancouver for ME-XRF10 which uses a Lithium Borate 50:50 flux with an upper detection limit of 60% and precision of 5%.

ME-ICP61, HF, HNO3, HCL04 and HCL leach with ICP-AES finish was used for 33 elements including base metals. ME-OG62, a four-acid digestion, was used on high grade samples for Pb, Zn, Cu & Ag.

External quality assurance of the laboratory assays for the Alphamin samples was monitored. Blank samples (299), certified reference materials (434) and duplicate samples (357) were inserted with the field samples accounting for approximately 11% of the total sample set.

The QAQC measures used by Alphamin revealed the following:Blank samples indicated that no significant contamination occurred overall. Low levels of contamination (mostly <200 ppm Sn) mostly occurred, however 12 values between 229 ppm and 1,285 ppm were returned. Given the high grades at Bisie, the levels of contamination are not significant.Five different CRMs were used with expected values between 0.18% and 31.42% Sn. The lower grade CRMs were prepared by Ore Research and Exploration (OREAS) and the two high grade CRMs (4.19% and 31.42% Sn) by the Bureau of Analysed Samples Ltd (BCS). In general, ALS returned values within the tolerance limits (three standard deviations) for the OREAS CRMs, although slightly lower than the expected values. Assays of the highest grade BCS CRM were mostly outside of the three standard deviation limits but within ±4%of the expected value. The update assays of the high grade BCS-355 CRM were within ±2% of the expected value with an overall low bias relative to the CRM expected value. For the 5.07% Sn BCS CRM, assays were consistently lower than the expected value by as much as 7%. This trend continued for the update assays with an average under-assay of 5% relative to the CRM expected value. Overall, the CRMs results indicate a slight negative bias for the ALS assays.Coarse duplicates show mostly excellent correlation, indicating minimal error in the process and a high degree of repeatability.
Verification of sampling and assayingThe mineralisation in thirteen of the drillholes completed in 2021 at Mpama South were visually verified during a site-visits by the QP in August 2021 and several of the initial drillholes were examined during earlier site visits to Bisie. The QP observed the mineralisation in the cores and compared it with the assay results. It was found that the assays generally agreed with the observations made on the core. Core photos from the drilling programme have regularly been provided to the QP for inspection.

105 pulp duplicates were sent to SGS (Johannesburg) in November 2021 for confirmation assaying.The pulp duplicates showed acceptable correlation with the ALS assays at both high- and low-grade ranges with an overall bias of near zero.Average bias for grade ranges > 1% is less than 1%.Tendency for ALS to be higher (~5%) for the grade ranges less than 1%.Inter-lab precision (after removal of <0.10%) is 85% within 10% error and 95% within 20% error
Location of data pointsThe drillhole collar positions were surveyed using a differential GPS.

Downhole surveys were completed using a multishot down-hole survey instrument (Reflex EZ-Track), or north seeking gyro (Reflex EZ-Gyro / Reflex Gyro Sprint-IQ).
Tonnage factors (in situ bulk densities)Relative density measurements were made on the majority of recent drillhole samples using the Archimedes Principle of weight n air versus weight in water. A regression formula of tin grade against relative density was developed and applied to the samples that did not have direct measurements. The assigned specific gravity was interpolated into the block model using ordinary kriging.
Data density and distributionA total of 124 holes were drilled in Mpama South. An additional 6 holes previously drilled in the Wedge area of Mpama North have been included in the Mineral Resource. Holes were drilled steeply from east to west, along section lines spaced approximately 60 m to 80 m apart. Several sets of holes were drilled in a fan pattern into the side of a steep hill, with orientations spanning from the northeast to the southeast (from azimuth 045° to 125°). These drillholes fans intersect the mineralisation 25 m to 40 m apart in most of the Mineral Resource area.
Database integrityData was provided as Excel files. MSA completed spot checks on the database and is confident that the Alphamin database is an accurate representation of the original data collected.
DimensionsThe mineralisation consists of seven zones, with a total extent of 950 m along strike. MZ1 has a strike length of 950 m and 500 m down-dip and MZ2 has a strike length of 650 m and 500 m down-dip. Together, these two zones account for 88% of the Mineral Resource. The zones occurring in the footwall and hangingwall of the MZ1 and MZ2 tend to be narrower and irregular in shape with strike lengths from 100 m to 300 m. MZ6, which is located to the south has a strike length of 270 m and a dip length of 110 m.
Geological interpretationThe mineralised intersections are clearly discernible in drill core. The Mineral Resource is interpreted to occur as irregular veins and disseminations of cassiterite that when combined form tabular mineralised zones, dipping 65-70° to the east. The mineralised zones are hosted in chlorite schist that is the result of intense hydrothermal alteration associated with a fracture system.

MZ1 is the largest zone by volume of the Mineral Resource, with an extent of 950 m and an average thickness of 4.1 m. MZ2 is the second largest zone, with a strike length of 650 m and an average thickness of 3.4 m. However, the thicknesses of these two zones vary from as little as 1 m, up to 13 m thick.

Three smaller zones (MZ3 to MZ5) occur in the footwall of the main zones of mineralisation which progressively become narrower, moving away from the main zones. MZ3 thickness ranges from 1 m to 9 m with an average thickness of 1.5 m. MZ4 has an average thickness of 1 m, attaining a maximum thickness of 5 m. MZ5 has an average thickness of 1.2 m, ranging from 1 m to 5 m. All zones become narrower along the edges, where they pinch-out.

A narrow zone (MZ7) occurs in the hangingwall of the main mineralisation with an average thickness of 0.5 m and a maximum thickness of 4 m.

MZ6, which occurs to the south, tends to be lower in grade and has an average thickness of 4 m, ranging from 1 m up to 9 m. MZ6 is not part of the Mineral Resource.

A three-dimensional wireframe model was created for the seven zones of mineralisation based on a grade threshold of 0.40% Sn. MZ1 and MZ2 make up the main zone, which are the most consistent zones and occur within a persistent chlorite schist. Narrower less continuous zones occur above and below the main zone within chlorite-mica schists.
DomainsThe mineralisation was modelled as seven tabular zones containing irregular vein style mineralisation. A hard boundary was used to select data for estimation in order to honour the sharp nature of vein boundaries.
CompositingSample lengths were composited to 1 m by length and density weighting.
Statistics and variographyStatistics for the seven estimation domains show distributions that are positively skewed with coefficients of variation (CV) ranging from 1.3 to 1.96, the only exception being domain MZ7 which shows lower variability due to very few composites resulting in a CV of 0.79.

The two main zones (MZ1 and MZ2) have similar average tin grades (2.22% and 2.11% respectively). The smaller, footwall zones (MZ3 to MZ5) are higher in tin grade with averages ranging from 3% to 4.41% while MZ6 and MZ7 are lower in tin grade, with an average of 0.63% and 1.07% respectively.

Normal Scores semivariograms were calculated in the plane of the mineralisation, down-hole and across strike. Variograms were modelled for tin, with a range of 40 m within the plane of mineralisation and with a range of 3 m across the structures.
Top or bottom cuts for gradesTop caps were applied to outlier values, identified as breaks in the cumulative, probability plots.
Data clusteringData clustering occurs where the fan drilling, collared on the western side of the deposit, intersect the surface drilling collared in the east, resulting in a data spacing of 25 m to 40 m towards the centre of the deposit. Outside of this area, the grid spacing becomes more regular, 60m to 80 m along strike and 50 m down-dip.
Block sizeA rotated block model with a parent cell of 10 mX by 10 mY by 2 mZ was used. Sub-celling was used to divide the parent cells to a minimum sub-cell of 1 mX by 1mY by 0.2 mZ to closely fit the narrow portions of the vein structures
Grade estimationTin, copper, lead, zinc, silver, arsenic and density were estimated using ordinary kriging. A minimum number of 5 and a maximum of 10 one metre composites were required for the tin and density estimates. A minimum of 5 and maximum of 8 composites were used for the other elements.

Estimation was carried out in three passes, with the first pass using search volumes coinciding with the variogram ranges. A second pass estimate expanded the search volumes by a factor of 1.5 to estimate blocks where insufficient samples were present for an estimate in the first pass. Where blocks remained un-estimated from the first two passes, a third pass, using an expansion factor of 10 was used to ensure all blocks in the model received a grade and density estimate.

Dynamic Anisotropy was used to orientate the search volumes to the strike and dip of the individual mineralised zones.
Resource classificationIndicated Mineral Resources were declared where the drillhole spacing is approximately 40 m and where the geological model has low variability. The remainder of the interpreted model was classified as Inferred Mineral Resources, corresponding to areas informed by drilling spaced 50 m to 80 m apart with a maximum extrapolation of 20 m from the nearest drillhole.
Mining cuts and cut-off grade assumptions.A minimum of 1 m was applied to the mineralisation model. The thickness, grade and steep dip implies that the Mineral Resource can be extracted using established underground mining methods similar to those applied at Mpama North.

A 1% cut-off grade was applied based on the Mpama North costs and prevailing tin price.

Isolated blocks above cut-off grade in dominantly low-grade areas of the model were not included in the Mineral Resource
Metallurgical factors or assumptionsThe tin mineralisation occurs as cassiterite, an oxide of tin (SnO2). At Mpama North gravity separation is used to produce a tin concentrate. The Cu, Zn and Pb mineralisation occurs as sulphides, which are removed by flotation to create the cassiterite product. It is assumed that similar processes will be used to process the Mpama South mineralisation.
Legal aspects and tenureAlphamin through its wholly owned DRC subsidiary, Alphamin Mining Bisie SA, has a Mining License PE 13155 which includes the Bisie Tin Mine. Alphamin has an 84.14 percent interest in ABM. The Government of the Democratic Republic of Congo (GDRC) has a non-dilutive, 5% share in ABM.
Audits, reviews and site inspectionThe following review work was completed by MSA:Inspection of approximately 20% of mineralised core intersections used in the Maiden Mineral Resource estimate.Database checks.Inspection of Mpama South drill sites in August 2021.On-site review of the exploration processes.Laboratory inspections.

1 Based on data obtained from International Tin Association Tin Industry Review 2022
2 See News Announcement 7 March 2022 for Preliminary Economic Assessment and Resources
3 CIM Definition: An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors insufficient detail to support mine planning and evaluation of the economic viability of the deposit.
4 CIM Definition: An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.