EDITOR: | May 15th, 2017 | 4 Comments

Understanding graphene part 6: Graphene Oxide

| May 15, 2017 | 4 Comments

Graphene is made of carbon so its oxide should be a fairly straightforward thing shouldn’t it? Everyone has heard of carbon dioxide and its sister gas carbon monoxide, so far so simple.

Graphene Oxide (GO) has more variations because the sheet of carbon atoms offers more ways for oxygen to engage with one or more carbon atoms. It gets a bit more complicated because hydrogen is involved too. Have a look at the picture of GO and you’ll see what I mean.

graphic showing how to make graphene oxide from graphite


How to make graphene oxide

Strong oxidising agents and concentrated acids do the job of creating graphene oxide directly from graphite using an improved Hummer’s Method  I would not recommend trying this at home.

The resulting graphene oxide has a variety of different functional groups attached to the hexagonal carbon sheet as you can see in the above graphic. These are Carboxylic acids (-COOH) Hydroxyl (-OH) and Epoxy (-O-) and others. The effect of this oxidation is to change the properties of graphene in a number of ways. Let’s focus on just two of the ways GO differs from graphene. Electrical conductivity and the way it interacts with water.

Electrical properties of graphene and graphene oxide

Graphene oxide does not conduct electricity very well, whereas graphene is one of the best electrical conductors known. This is due to the nature of the bonding, sp2 in graphene and sp3 in graphene oxide. You can find out more about sp bonding here.

You’ll now need another piece of information. The opposite of oxidation is called reduction. Graphene oxide can be turned back into graphene with a reducing agent and heating. This makes it conduct electricity again.

Imagine how this might be used. A layer of graphene oxide can be printed with microscopic patterns using ink containing a reducing agent such as ascorbic acid. Heat the layer and conductive graphene forms wherever the reducing ink has been printed. We now have the ability to make microscopic electronic circuits that can form the basis of all sorts of useful electronic devices. This is the type of work that Dr Vivek Pachauri has been doing in Germany to create tiny sensors that can detect health conditions in blood samples. This means saving time, money and reducing the stress in patients who do not have to wait long for their results.

Graphene and graphene oxide affinity with water and oils

Graphene is hydrophobic / oleophilic (it repels water and attracts oils). Graphene Oxide is hydrophilic / oleophobic (it attracts water and repels oils). Put graphene platelets into water and they will not mix and float on the surface. Do the same with graphene oxide platelets and they will disperse in the water.

This interaction with water is what makes graphene oxide the material of choice for desalination membranes that can filter drinking water from seawater.

Reverse some of the oxidation and you can create a material that is both hydrophilic and oleophilic. This is called Janus Graphene. So what? Well, graphene sponges can be made that can mop up oil spills on the surface of the ocean and other bodies of water. These sponges can deal with both water-in-oil and oil-in-water emulsions that are normally very difficult to treat.

So, graphene oxide is useful stuff. It has complementary properties to its sister compound graphene. It is already finding practical applications with clear benefits. It is this connection of cutting edge research with clear customer benefits that is taking graphene and its derivatives from the lab to the market. Industrial scale commercialisation will follow in the coming years.


Adrian Nixon is a Senior Editor at InvestorIntel. He began his career as a scientist and is a Chartered Chemist and Member of the Royal ... <Read more about Adrian Nixon>

Copyright © 2018 InvestorIntel Corp. All rights reserved. More & Disclaimer »


  • Hackenzac

    Why can’t flake graphite be oxidized and then partially reduced to get to a useful hydrophobic/hydrophilic midpoint for spill cleanup? Spots of Janus within the matrix if you will. There would presumably be some efficacy as you’re describing in such a substance without all of the extra work of getting to graphene.

    May 16, 2017 - 12:11 PM

  • Adrian Nixon

    Hello Hackenzac The short answer is you are right. Flake graphite can be directly oxidised to graphene oxide, then reduced back slightly to create a Janus GO. The oxidation process exfoliates the graphene nano-platelets from the graphite. So both graphite and graphene can be used as the source material. The choice of source material depends on the control you want to have over the end product, starting with processed graphene will give a little more precise control than graphite. The researchers who created the janus graphene oxide sponge went a little further than just a mix of graphene and graphene oxide. They fluorinated the graphene as well as oxidising part of it to increase the oleophilic properties. Knowing your thorough approach, I’d guess you’ve already been through the source links in my column and seen this. I’m noting this here to bring this to the attention of our other interested readers. Thanks again for taking time to comment, you always make me think harder and that’s a good thing.

    May 16, 2017 - 1:57 PM

  • Understanding Graphene Part 7: Graphene Fibre

    […] So, melting graphene is not feasible. However graphene fibres have been made and were first reported in 2011. The process starts with graphite, which is exfoliated into nanoplatelets, sometimes misleadingly called graphene sheets. These nanoplatelets are oxidised to graphene oxide (GO). […]

    June 19, 2017 - 2:53 PM

  • Graphene for Water Treatment

    […] are a set of perfectly ordinary polyamide filters, except for the fact that they are coated in graphene oxide. They look slightly different, the colour difference is due to the degree of oxidation of the […]

    August 24, 2017 - 11:41 AM

Leave a Reply

Your email address will not be published. Required fields are marked *