The New Landscape for Rare Earth Permanent Magnets

- U.S.-Sourced Feedstock
- Secure Supply Chains
- Long-Term Price Visibility
- Less Reliance on “Heavy” Rare Earths
Safe Harbor Statements

This presentation contains forward-looking statements within the meaning of the federal securities laws. These forward-looking statements represent Molycorp's beliefs, projections and predictions about future events or Molycorp's future performance. Forward-looking statements can be identified by terminology such as “may,” “will,” “would,” “could,” “should,” “expect,” “intend,” “plan,” “anticipate,” “believe,” “estimate,” “predict,” “potential,” “continue” or the negative of these terms or other similar expressions or phrases. These forward-looking statements are necessarily subjective and involve known and unknown risks, uncertainties and other important factors that could cause Molycorp's actual results, performance or achievements or industry results to differ materially from any future results, performance or achievement described in or implied by such statements.

Factors that may cause actual results to differ materially from expected results described in forward-looking statements include, but are not limited to: the potential need to secure additional capital to implement Molycorp's business plans, and Molycorp's ability to successfully secure any such capital; Molycorp's ability to complete its planned capital projects, such as its modernization and expansion efforts, including the achievement of an initial run rate of 19,050 metric tons at its Mountain Pass, California rare earth mine and processing facility (the “Molycorp Mountain Pass facility”), and reach full planned production rates for REO and other planned downstream products, in each case within the projected timeframe; the success of Molycorp's cost mitigation efforts in connection with its modernization and expansion efforts at the Molycorp Mountain Pass facility, which, if unsuccessful, might cause its costs to exceed budget; the final costs of Molycorp's planned capital projects, which may differ from estimated costs; Molycorp's ability to achieve fully the strategic and financial objectives related to the acquisition of Neo Material Technologies, Inc. (now Molycorp Canada), including the acquisition's impact on Molycorp's financial condition and results of operations; foreign exchange rate fluctuations; the development and commercialization of new products; risks and uncertainties associated with intangible assets, including any future goodwill impairment charges; unexpected actions of domestic and foreign governments; various events that could disrupt operations, including natural events and other risks; uncertainties associated with Molycorp's reserve estimates and non-reserve deposit information, including estimated mine life and annual production; uncertainties related to feasibility studies that provide estimates of expected or anticipated costs, expenditures and economic returns, REO prices, production costs and other expenses for operations, which are subject to fluctuation; uncertainties regarding global supply and demand for rare earths materials; uncertainties regarding the results of Molycorp's exploratory drilling programs; Molycorp's ability to enter into additional definitive agreements with its customers and its ability to maintain customer relationships; Molycorp's sintered neodymium-iron-boron rare earth magnet joint venture's ability to successfully manufacture magnets within its expected timeframe; Molycorp's ability to maintain appropriate relations with unions and employees; Molycorp's ability to successfully implement its vertical integration strategy; environmental laws, regulations and permits affecting Molycorp's business, directly and indirectly, including, among others, those relating to mine reclamation and restoration, climate change, emissions to the air and water and human exposure to hazardous substances used, released or disposed of by Molycorp; uncertainties associated with unanticipated geological conditions related to mining; and the outcome of stockholder class action litigation, derivative litigation and a pending SEC investigation, including any actions taken by government agencies in connection therewith.

For more information regarding these and other risks and uncertainties that Molycorp may face, see the section entitled “Risk Factors” of the Company's Annual Report on Form 10-K for the year ended December 31, 2012. Any forward-looking statement contained in this presentation reflects Molycorp's current views with respect to future events and is subject to these and other risks, uncertainties and assumptions relating to Molycorp's operations, operating results, growth strategy and liquidity. You should not place undue reliance on these forward-looking statements because such statements speak only as to the date when made. Molycorp assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future, except as otherwise required by applicable law.
Main Points

1. Demand is growing for higher efficiency motors as a result of rising energy efficiency standards and consumer demand for smaller, lighter, and more energy efficient products. Rare earth (RE) permanent magnets help reduce motor size, weight, and energy consumption to better meet these regulatory and market demands.

2. In the past two years, rare earth price volatility, lack of supply security, and concerns over “heavy” rare earth availability have discouraged manufacturers from using RE permanent magnets and encouraged them to find alternatives, which can increase energy usage and degrade performance.

3. However, production of magnetic rare earths outside of China is now growing rapidly, which is driving greater long-term supply of RE permanent magnets. New, vertically integrated supply chains outside of China can now offer flexible entry points, security of supply, pricing visibility, and long-term contracts.

4. Additionally, engineering advances and new economic realities are bringing manufacturers back to rare earth magnets. NdFeB magnets that contain little-to-no Dysprosium (Dy) can meet or exceed the performance of traditional sintered magnets with high Dy content (8-10%) for applications that operate in higher temperature environments.
Update: Molycorp’s Production Ramp & Global Supply Chains
✓ Operational ramp proceeding as planned to Phase 1 run rate (19,050 mt/year) by mid-2013; annual production rate now at ~6,000 mt/year.
✓ Current bottlenecks to production ramp are mechanical, not technological, with issues such as filtration and equipment/infrastructure. All are being managed.
✓ Chloralkali facility on track for completion and commissioning in 2H 2013.
✓ Target production cost range ($6-$7/kg) on track assuming achievement of Phase 1 run rate and successful commissioning of chloralkali facility.
✓ Operating cash position remains good, with an additional $100-$150M credit revolving facility nearing completion.
Diverse, Vertically Integrated Supply Chains

Mining & Production of Concentrate

Value-Added Supply Chain OUTSIDE China

- **LREE REO Separation**
 - Mountain Pass (Calif.)
 - Silmet (Estonia)

- **Metal / Alloy Production**
 - Tolleson (Arizona)
 - Silmet (Estonia)
 - Tolling Companies

Value-Added Supply Chain INSIDE China

- **HREE REO Separation**
 - HREE Facility
 - Expected 2013/14
 - Location outside China TBA

- **Magnetic Materials**
 - Korat (Thailand)
 - Intermetallic Japan

Products sold directly from Mountain Pass

- **LREE REO Separation**
 - Zibo, China

- **HREE REO Separation**
 - Jiangyin, China

- **Magnetic Materials**
 - Tianjin, China

CUSTOMERS WORLDWIDE

Diverse, Vertically Integrated Supply Chains
The Powerful Benefits of Rare Earth Permanent Magnets
The Power of Rare Earth Magnets in Motors

By replacing Ferrite magnets in motors with:

Rare Earth Permanent Magnets

You can REDUCE:

- Power Consumption By 10%
- Dependence on Liquid Fossil Fuels
- CO₂ and other Emissions
- Consumption of natural resources
- Lifecycle Costs
- Weight and Size

RE motor vs. Ferrite based motor
The Power of Rare Earth Magnets in Motors

Rare Earth magnets help make technologies more effective and more efficient.

- Computing & Network Technologies
- High-Efficiency Motors for Energy-Efficient Homes
- Aerospace
- Automobiles
- Clean Energy
The use of Rare Earth Permanent Motors can help achieve energy efficiency savings of up to 20%.

45%* Percentage of global power consumption by Electric Motor Driven Systems.

45%** Source: 2011 International Energy Agency analysis

55% All Other Consumption

* Global Energy Savings Potential of RE Magnet Motors

** Source: Mitsubishi Corporation.
How The Landscape For RE Magnets Has Changed in the Past Year
Prior to 2010

Manufactures Increasingly Designing Products with Rare Earth Magnets

- Low and Relatively Stable Rare Earth Prices
- Reliability of Rare Earth Supplies was Less of a Concern than Today
- Rare Earth Magnets Cost-to-Performance Ratio Was Steadily Improving

2010 – 2012

A Period of Increased Risk for Magnet Users

- Manufacturers Dissuaded from Rare Earth Magnet Use
- Limited Supply Options
- Supply Constraints & Shortages
- Rare Earth Prices Highly Volatile
2013: Rare Earth Supply Situation is Greatly Improving

New Supplies Coming Online Outside China

Global Rare Earth Supply Landscape is Greatly Improving

Security of Supply

Visibility Into Pricing

Long-Term Supply Agreements

Less Dependence on Heavy REs (Dy)

Others over the long-term

Lynas
Today’s State-of-the-Art: NdFeB Permanent Magnets With Little-to-No Dysprosium
Low-to-Zero Dysprosium NdFeB Magnets

MQ1

- Zero-Dy Bonded Magnets
- Cost-effective replacement for iron-based (ferrite) magnets
- Allows for smaller/lighter motors
- Helps vehicles meet higher fuel efficiency and performance standards
- Made from abundant Mountain Pass, California rare earth ore

MQ3

- Hot-Pressed, Fully Dense Magnets With Low-Dy Content
- 2-4% “Dy advantage” over sintered NdFeB magnets
- Excellent magnetic properties at temps of up to 180°C with little Dy
- Made from abundant Mountain Pass, California rare earth ore

MQ2

- Hot-Pressed, Fully Dense Magnets With Zero-Dy Content
- Provides a 4-7% “Dy advantage” over sintered NdFeB magnets
- Excellent magnetic properties at temps of up to 200°C with zero Dy
- Made from abundant Mountain Pass, California rare earth ore

![Graphs and diagrams showing efficiency and irreversible flux loss over temperature for MQ1 and MQ3 magnets.]

- **Efficiency (%) vs. Torque (mNm):**
 - Motor with Ferrite Magnet
 - Motor with MQ1 Magnet
 - Allows for higher efficiency

- **Irreversible Flux Loss after 1 hr (%) vs. Temperature (°C):**
 - MQ3 grade with low Dy (2%)
 - Excellent thermal stability
MQ magnets (MQ1, MQ2, and MQ3) fill the gap between fully dense anisotropic sintered neo magnets and sintered ferrite magnets.

MQ magnets, with only very limited exceptions, contain no heavy rare earths such as Dy or Tb.
The MQ2 and MQ3 Dysprosium (Dy) Advantage

- Smaller grain size improves H_cJ, so less Dy needed
- MQ3 grain size is 20X smaller than traditional sintered NdFeB magnet
- MQ2 grain size is 100x smaller than traditional sintered NdFeB magnet

√ MQ3 vs. traditional sintered (2-4% less Dy at a given temperature)
√ MQ2 vs. traditional sintered (4-7% less Dy at a given temperature)

1 Micrometers (μm) = 1000 Nanometers (nm)
High-Performance, Low-Dy Sintered NdFeB Magnets

- **High-Performance, Low-Dy Sintered Magnets**: Intermetallics Japan is now producing next-generation, high-performance sintered NdFeB magnets with 50% or less dysprosium content than traditional sintered magnets. IMJ recently has developed high-performance Dy-free sintered NdFeB magnets.

- **Abundant Feedstock**: Magnetic rare earths are sourced from Molycorp’s world-class rare earth facility in Mountain Pass, California.

- **Target markets**: Automotive and home appliance sectors.

IMJ’s Next-Generation, Low-Dy Sintered NdFeB Magnets

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Magnetic Performance</td>
<td>• GBD (Grain Boundary Diffusion) and fine powder technology yields higher magnetic properties and magnet performance.</td>
</tr>
</tbody>
</table>
| **Cost Advantages** | • Higher production yield (80～90%)
 • Less heavy rare earth (Dy & Tb) content for lower cost and price stability.
 • Zero-Dy sintered magnets |
| **Superior Quality** | • Quality assurance is overseen by one of the world’s leading producers of high-end rare earth permanent magnets: Daido Steel. |
| **Stable Feedstock Sourcing** | • Magnetic rare earth feedstock comes from the world-class, high-tonnage rare earth deposit of Molycorp’s Mountain Pass, California facility. |
| **Strong Global Alliance** | • Research and development capabilities of Intermetallics Co. Ltd. combined with strategic alliances with Daido Steel, Mitsubishi Corporation and Molycorp. |
Approaches to Dy-diffusion by the top Japanese Sintered Magnet Makers

A number of different grain boundary diffusion techniques have been reported by the various Japanese sintered magnet manufacturers.

- **Blending** \(\text{Dy}_2\text{O}_3 \) powder with the NdFeB powder and combining the sintering and Dy-diffusing stages.
- Also discussed treating Dy-coated sintered magnets.
- Savings in Dy: 20-50% less Dy

Traditional method

High baking temperature causes Dy to diffuse into the interior of crystalline particles.

Dy Diffusion

Cross section showing Dy distribution in a neodymium magnet made using the HAL process:

Dy gathers non-centrally at the periphery of crystalline particles.

ShinEtsu

- Coating 1-5mm thin magnets with \(\text{Dy}_2\text{O}_3 \) and \(\text{DyF}_3 \) slurries and heating these coated magnets for 1-10 hours at 800-900°C
- Savings in Dy: 60% from original
- Can be found in new Nissan Leaf 2012 model

Hitachi

- Dy-vapor diffusion technique, where thin sintered magnets are thermally treated in Dy-vapor environment
- Hitachi is currently running a sample evaluation program with key customers and expects full commercialization of the series with new Dy-reduction technologies in 2014.

ULVAC

- Savings in Dy: 20%
- Can be found in new Nissan Leaf 2012 model
How Manufacturers Today Are Using Low-to-Zero Dy Rare Earth Magnets
The Benefits of Using Rare Earth Permanent Magnet Motors

- **Permanent Magnet Motors**
 - Energy Efficiency
 - Dynamic Performance
 - Operational Efficiencies
 - Continuous Torque
 - Bearing Life

- **Induction Motors**
 - Lifecycle Costs
 - Size & Weight
 - Noise & Vibration
 - Operating Temperature
 - Current

- **Motors with MQ1 Magnets**
 - Performance
 - Torque Density
 - Fuel Efficiency
 - Energy Efficiency (esp. for appliances)
 - Greater Functionality

- **Motors with Zero-Dy MQ2 Magnets**
 - Lower Dy content leverages larger global supply of light REs
 - 18% lower overall material cost in a similar size and weight envelope

- **Sintered Neo Magnets w/Dy**
 - Thermal Stability, Torque Density, Fuel & Power Efficiency
 - Noise, Vibration, Cogging Torque

MQ2 magnets can offer 18% lower total material cost in a similar size and weight envelope.

Comparative Table

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length</th>
<th>Magnet Weight</th>
<th>Total Weight</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sintered Neo (4.5% Dy)</td>
<td>1</td>
<td>1</td>
<td>1.13</td>
<td>0.97</td>
</tr>
<tr>
<td>MQ2 (0% Dy)</td>
<td>1</td>
<td>1</td>
<td>1.07</td>
<td>0.82</td>
</tr>
</tbody>
</table>
Design Innovation Allows Low-to-Zero Dy Magnets

High Efficiency Refrigerator Fan Motor

Action: Replaced motors using ferrite magnets in refrigerator fan motor with MQ1 magnets

RESULTS:
- Reduce the size of the motor: height by 70% and diameter by 27%
- Motor efficiency improved by 10%, resulting in 1~2% improvement in whole refrigerator system
- Better design by eliminating protruded parts due to the height of motors and fans

Residential HVAC Circulation Pump

Action: Replaced induction motor in circulation pumps with motors using MQ1 magnets

RESULTS:
- Helps pumps meet new energy efficiency standards
- Reduces energy consumption
- EU ordinance prohibits the sale of technically outmoded, inefficient pump models from 2013 onwards
- Replacement is cost-effective

Compressors for AC Systems

Action: Replaced motor using sintered Neo magnets (7-8% Dy) with MQ3 (2-3% Dy) magnets

RESULTS:
- Performance maintained while reducing component costs with less Dy
Companies Utilizing NdFeB Magnets in Motors & Components

- Bicycle Dynamo
- Engine Cooling Fan Motor
- AC Compressor Motor
- Fuel Pump Motor
- Window Lift Adjustment Motor
- Headlight Adjustment Motor
- Seat Motor
- Power Steering Sensor Motor
- AC Compressor Motor
- Engine Cooling Fan Motor
- Bicycle Dynamo
Companies Utilizing NdFeB Magnets in Motors & Components

- Ceiling Fan
- Refrigeration
- AC Motor
- Vacuum Cleaner
Companies Utilizing NdFeB Magnets in Motors & Components

- Hard Disk Drives
- Optical Disk Drives
- Servers
- Office Automation
Conclusions

1. Global production outside of China of magnetic rare earths is rising, and newly integrated supply chains offer flexible entry points, security of supply, pricing visibility, and long-term contracts – inside or outside of China.

2. Heavy rare earths are becoming less and less of an impediment to the security of supply of high-performance NdFeB magnets.

3. Using rare earth permanent magnets in motors, instead of ferrite magnets, delivers many powerful economic and environmental benefits to manufacturers and consumers.

4. Given that motors consume an estimated 45% of all energy generated globally, increasing motor efficiencies through rare earth permanent magnets promises many powerful environmental and energy savings benefits to the world.
Questions?

For more information, please contact:

• Jim Sims, Molycorp, Inc.,
 jim.sims@molycorp.com

• Greg Kroll, Molycorp Magnequench,
 greg.kroll@molycorp.com