A Small Step for Graphene, A Giant….

A Small Step for GrapheneHow the electron acquires its mass is a fundamental topic and is related to particle physicists' hunt for the Higgs boson, a long-hypothesized elementary particle that has predicted properties, such as a lack of spin and electric charge, but that does not have a predicted value for mass. Being able to move electrons between a massive and massless state allows scientists to study this duality and how it works. The level of control the scientists have over the process will allow them to figure out possible ways to use graphene for advancing this understanding.

Sometimes it’s easy to overlook a small detail with giant implications. Last week, I suspect, scientists at the University of Arkansas published just such a detail that promises a giant leap for mankind in the years and decades ahead. While they might not have found “God’s particle,” the elusive Higgs boson, they might just have got the consolation prize of the next best thing. Like Faraday before them, opening up electromagnetism in the 19th century, the Arkansas physicists might just have unlocked the key secret of the arriving graphene age.

"That's one small step for  man, one giant leap for mankind."

Neil Armstrong.

Subscribe here to receive free daily InvestorIntel updates

New Technique Controls Graphite to Graphene Transition
ScienceDaily (June 29, 2012) — University of Arkansas physicists have found a way to systematically study and control the transition of graphite, the "lead" found in pencils, to graphene, one of the strongest, lightest and most conductive materials known, an important step in the process of learning to use this material in modern day technology.

Peng Xu, Paul Thibado, Yurong Yang, Laurent Bellaiche and their colleagues report their findings in the journal Carbon.

—-"The transition from graphite to graphene can be random," said Xu. "Our idea was to control this."

The researchers used a new technique called electrostatic manipulation scanning tunneling microscopy to "lift" the top layer of graphite, creating graphene. Scientists have traditionally used scanning tunneling microscopy on a stationary surface, but this new technique uses a moving surface to move between graphite and grapheme.

"Not only can we make it happen, but we can control the process," Xu said.

Using this technique, the researchers can tell how much force it takes to create graphene and how much distance exists between graphene and the graphite as well as to track the total energy of the process.
More

Carbon
Link.

Electricity is often called wonderful, beautiful; but it is so only in common with the other forces of nature. The beauty of electricity or of any other force is not that the power is mysterious, and unexpected, touching every sense at unawares in turn, but that it is under law, and that the taught intellect can even govern it largely. The human mind is placed above, and not beneath it, and it is in such a point of view that the mental education afforded by science is rendered super-eminent in dignity, in practical application and utility; for by enabling the mind to apply the natural power through law, it conveys the gifts of God to man.

Michael Faraday. The Royal Institution  1858.


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>